A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
نویسندگان
چکیده
MOTIVATION The explosion of microarray studies has promised to shed light on the temporal expression patterns of thousands of genes simultaneously. However, available methods are far from adequate in efficiently extracting useful information to aid in a greater understanding of transcriptional regulatory network. Biological systems have been modeled as dynamic systems for a long history, such as genetic networks and cell regulatory network. This study evaluated if the stochastic differential equation (SDE), which is prominent for modeling dynamic diffusion process originating from the irregular Brownian motion, can be applied in modeling the transcriptional regulatory network in Saccharomyces cerevisiae. RESULTS To model the time-continuous gene-expression datasets, a model of SDE is applied to depict irregular patterns. Our goal is to fit a generalized linear model by combining putative regulators to estimate the transcriptional pattern of a target gene. Goodness-of-fit is evaluated by log-likelihood and Akaike Information Criterion. Moreover, estimations of the contribution of regulators and inference of transcriptional pattern are implemented by statistical approaches. Our SDE model is basic but the test results agree well with the observed dynamic expression patterns. It implies that advanced SDE model might be perfectly suited to portray transcriptional regulatory networks. AVAILABILITY The R code is available on request. CONTACT [email protected] SUPPLEMENTARY INFORMATION http://www.csie.ntu.edu.tw/~b89x035/yeast/
منابع مشابه
Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
We describe the use of model-driven analysis of multiple data types relevant to transcriptional regulation of metabolism to discover novel regulatory mechanisms in Saccharomyces cerevisiae. We have reconstructed the nutrient-controlled transcriptional regulatory network controlling metabolism in S. cerevisiae consisting of 55 transcription factors regulating 750 metabolic genes, based on inform...
متن کاملParameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae
We investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance...
متن کاملQuantitative characterization of the transcriptional regulatory network in the yeast cell cycle
MOTIVATION Genome-wide gene expression programs have been monitored and analyzed in the yeast Saccharomyces cerevisiae, but how cells regulate global gene expression programs in response to environmental changes is still far from being understood. We present a systematic approach to quantitatively characterize the transcriptional regulatory network of the yeast cell cycle. For the interpretativ...
متن کاملApplication of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit
In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...
متن کاملAnomalies in the transcriptional regulatory network of the yeast Saccharomyces cerevisiae.
We investigate the structural and dynamical properties of the transcriptional regulatory network of the Yeast Saccharomyces cerevisiae and compare it with two "unbiased" ensembles: one obtained by reshuffling the edges and the other generated by mimicking the transcriptional regulation mechanism within the cell. Both ensembles reproduce the degree distributions (the first-by construction-exactl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2005